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Macromodeling of Mutual Inductance for Displaced
Coils Based on Laplace’s Equation

Harry Weber, Harun Baran, Fabian Utermöhlen and Christian Schuster, Senior Member, IEEE

Abstract—Magnetic coupling is applied in a vast of different
applications like sensors or medical imaging. Especially for induc-
tive position sensors, magnetic coupling is a main aspect. Hereby,
the position information is coded in the mutual inductance
between a coil and a target. Consequently, the change of mutual
inductance according to the relative position of coupled coils
is of special interest in such applications. In this contribution,
a new generalized method is presented which can be used to
derive a macro model describing the mutual inductance with
respect to relative position of a pair of coils. In contrast to
the known procedures, the presented method can be applied
for complex coil geometries since no analytic solution of the
mutual inductance is necessary. For this purpose, it is utilized
that the mutual inductance for a pair of coils can be treated
as potential function which obeys Laplace’s equation. By solving
Laplace’s equation, a physics-based approach for a macro model
is derived which describes explicitly the behavior of the mutual
inductance in dependency of the relative position of the coils.
With this macro model, further analysis can be performed in
circuit design or performance analysis of the sensor for example.
For evaluation, the accuracy of the procedure is presented
for different coil geometries which are applied in industrial
and biomedical applications in order to emphasize the broad
applicability of the presented method.

I. INTRODUCTION

The magnetic coupling of coils routinely plays a role in
engineering applications. For example, in contactless position
sensors, which are widely applied in different industrial and
automotive applications, the magnetic coupling between spe-
cial designed coils is used for position measuring [1]–[4]. One
possible realization of such contactless position sensor is the so
called Contactless Inductive Position Sensor (CIPOS R©) which
is applied in automotive applications. Such position sensor
consists of a conductive rotor, which can be modeled as a coil,
and excitation as well as receiving coils on a printed circuit
board (PCB). Due to the special geometric design of the rotor
and the receiving coils, the magnetic coupling between these
coils changes in dependency of the relative position. A detailed
description of the CIPOS R© and exemplary applications can
be found in [5]. For such an inductive position sensor, the
behavior of the magnetic coupling mainly influences the
overall performance of the sensor like accuracy or sensitivity
to misalignment.
Other examples in which magnetic coupling is important
can be found also in biomedical applications like magnetic
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Fig. 1: Arrangement of two displaced filamentary coils with
separated origins O1 and O2 for the calculation of the mutual
inductance L12 at two different positions R1 and R2 inside a
region Ω with the border ∂Ω.

resonance imaging (MRI) [6]. All these different areas of
applications have in common that an appropriate model with
respect to the relative position of the pair of coils is desirable.
In Fig. 1, the general problem of two magnetic coupled coils
is presented which are displaced to each other. The magnetic
coupling of coils is described by the mutual inductance L12

which depends on the geometry and relative position R of
the coils. In the case of a displacement, a change in L12

can be noticed as shown qualitatively in Fig. 1. In order to
calculate L12, usually numerical simulations or measurements
are performed. However, the simulation has to be repeated
for all possible relative positions of the coils. Usually, a
large number of numerical simulations has to be performed.
Especially, when different coil parameters are varied, this
approach can be time consuming.
Alternatively, the mutual inductance can be represented by
elliptic integrals using Neuman’s formula which have to be
solved numerically for each position [7], [8]. In dependency
of the specific geometry of the coils, the numerical evaluation
of these elliptic integrals can be also time consuming [9].
Another approach is to derive a so called macro model which
depends only on specific parameters. In comparison to a
complete model which describes the behavior in dependency
of all possible parameters, like specific geometry of the coils,
a macro model depends explicitly only on selected variables
like the relative position of the coils. In literature, different
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methods exist in order to obtain such macro models for
different applications [10].
In [11], Polynomial Chaos Expansion is used for the efficient
analysis of a multi-coil system deriving a series expansion in a
desired parameter region. Furthermore, it is possible to derive
a macro model by model order reduction or solving a fitting
problem [10]. For example, a partial element equivalent circuit
(PEEC) can be deduced by an electric field integral equation
(EFIE) yielding a high dimensional problem which is reduced
by model order reduction [12].
In [13], [14] a series expansion of the mutual inductance for
arbitrary displacements of spiral coils is derived based on a
given solution for a specific variation of position. The exten-
sion of a given solution to arbitrary displacements is obtained
by treating the mutual inductance as a potential function in
dependency of the relative position of the coils which obeys
Laplace’s equation. However, the presented method can only
be applied for simple geometries for which an analytic solution
can be derived in advance.
In this contribution, a more general method is presented to
derive a macro model of the mutual inductance for filamentary
coils in dependency of the relative position as shown in [15]. In
contrast to the procedure described in [13], [14], it is possible
to apply the presented method for complex coil geometry since
no analytic solution of the mutual inductance is necessary.
Based on the idea to treat the mutual inductance as a potential
function in the case of filamentary coils, a macro model
approach is derived by solving Laplace’s equation. Once
suitable boundary conditions are used, the mutual inductance
with respect to the relative position can be described by the
macro model. An extension of the method for coils with cross
section can be performed by discretization as presented in
[16]. The advantage of the proposed method is the application
independent of the specific coil geometry. Therefore, the
proposed method can be applied in a variety of inductive
applications in order to obtain a simple model of the mutual
inductance in dependency of the relative positions of a pair
of coils. Such macro model can be for example used in the
design of position sensors, see for example [17], or for analysis
of a complete system considering displacement of coils. In
comparison to already existing methods, no analytic solution
has to be known in advance and numerical or measurement
results can be used in order to derive a macro model. The
remainder of this contribution is structured as follows.
In Section II, the relation between mutual inductance and
Laplace’s equation is discussed and reviewed. The procedure
to derive the macro model is presented and discussed in
Section III. Possible adaption of the obtained general solution
to given boundary conditions is discussed in Section IV.
Finally, the complete procedure is demonstrated by means of
examples from different areas of applications in Section VI
in order to emphasize the broad applicability of the presented
method.

II. MUTUAL INDUCTANCE AS POTENTIAL FUNCTION

In Fig. 1, the considered arrangement of two filamentary
coils with arbitrary geometry is presented. Each coil is de-
scribed in correspondence to a separated axis with origins

O1 and O2 by the parameterization x1 and x2. The distance
between O2 and O1 is described by R with the direction from
O2 to O1. In the following, the mutual inductance L12 shall
be determined in a predefined region Ω with the boundary
∂Ω. Therefore, it follows R ∈ Ω. The mutual inductance
L12 between coil 1 and 2 can be calculated by the Neumann
formula

L12 =
µ

4π

∮
C2

∮
C1

dx1 · dx2

‖x1 − x2 + R‖
, (1)

whereby dx1 and dx2 are the differential flows of the currents
in coil 1 and coil 2, respectively [18]. As can be seen in (1),
a singularity can occur with respect to R. The valid region of
R depends on C1, C2, x1 and x2 or the origins O1 and O2,
respectively. It has to be ensured that an intersection cannot
occur by choosing appropriate parameters and origins.
An analytic solution of the integral (1) can only be derived
in simple cases. Therefore, for each R, (1) has to be solved
numerically. However, the mutual inductance in (1) can be
interpreted as potential function in dependency of R fulfilling
Laplace’s equation

∆L12(R) = 0 (2)

with boundary conditions and the argument R [14], [18]. This
can be shown by substitution of (1) in (2) with an arbitrary
coordinate system for R. Therefore, the mutual inductance
of displaced coils can be determined by solving Laplace’s
equation in (2). In contrast to (1), the problem in (2) depends
only on the displacement vector R. This enables to determine
the mutual inductance in dependency of R without solving the
complete problem repeatedly for different R in Ω. However,
a unique solution of Laplace’s equation is only obtained in
combination with boundary conditions. These can be derived
in advance by (1), numerical simulations or measurements.
Hence, the dependency on the explicit geometry of the coils
is contained in the boundary conditions.

III. MACRO MODEL APPROACH SOLVING LAPLACE’S
EQUATION

A solution of Laplace’s equation in (2) can be derived by
different methods [18]. One possibility is the application of
numerical methods like Finite Differences [19]. Alternatively,
an analytic solution can be derived with the method of sepa-
ration of variables. Hereby, the solution of Laplace’s equation
is stated by basis functions L̂l1,l2 yielding a series expansion

L12 =

∞∑
l1,l2=0

Cl1,l2L̂l1,l2 (3)

which is truncated after an order Nmax yielding an approxi-
mate solution of Laplace’s equation. With the boundary condi-
tions on ∂Ω, the coefficients Cl1,l2 in (3) can be determined.
The basis functions in (3) depend on the coordinate system
in which R is described. In this contribution, R(r, θ, ϕ) is
described by a spherical coordinate system yielding the mutual
inductance L12(r, θ, ϕ).
For a Cartesian or cylindrical coordinate system, a general
problem is composed of 6 and 3 solutions respectively. Only
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for symmetrical problems, the number of superimposed solu-
tions can be reduced [20]. Based on (2) a spherical boundary
condition for Laplace’s equation can be stated as

L12(a, θ, ϕ) = f(θ, ϕ) (4)

with the radius a, θ ∈ [0, π] and ϕ ∈ [0, 2π]. The function
f(θ, ϕ) depends on the specific geometry of the pair of coils
and the relative position. If no additional constraints are given,
a can be freely chosen as long as no intersection of the
pair of coils occur. As will be discussed in Section IV, the
accuracy of the procedure depends on a and has to be chosen
in dependency of the considered problem.
A general solution of (2) in the case of a spherical coordinate
system is derived by separation of variables. For this purpose,
the product approach

L12(r, θ, ϕ) = R(r)Θ(θ)φ(ϕ) (5)

is applied. In (5) the mutual inductance L12(r, θ, ϕ) is sep-
arated in three unknown functions R(r), Θ(θ) and φ(ϕ).
With (5), Laplace’s equation in (2) can be transformed into
separated ordinary differential equations which are solved in
order to determine the unknown functions R(r), Θ(θ) and
φ(ϕ). The general solution obtained by (5) is

L12(r, θ, ϕ) =

∞∑
l1=0

( r
a

)l1 [1

2
a0l1Pl1(cos(θ))

+

l1∑
l2=1

(al2l1 cos(l2ϕ) + bl2l1 sin(l2ϕ))P l2l1 (cos(θ))

] (6)

inside the spherical boundary condition r < a and

L12(r, θ, ϕ) =

∞∑
l1=0

(a
r

)l1+1
[

1

2
a0l1Pl1(cos(θ))

+

l1∑
l2=1

(al2l1 cos(l2ϕ) + bl2l1 sin(l2ϕ))P l2l1 (cos(θ))

] (7)

outside the spherical boundary condition r > a, whereby
Pl1(cos(θ)) are Legendre polynomials, P l2l1 (cos(θ)) are asso-
ciated Legendre polynomials and al2l1 , bl2l1 ∈ R. A detailed
derivation of the general solution and the convergence behavior
of the series is described in [20].
For a pair of coils, (6) and (7) are applicable independent
of the specific geometry. The missing coefficients al2l1 and
bl2l1 have to be adapted to the spherical boundary condition
f(θ, ϕ) in (4). In comparison to the general solutions in (6)
and (7), f(θ, ϕ) depends explicitly on the geometry of the
coils. Hence, the complete problem has to be solved on the
boundary condition.
Once the coefficients are adapted to the boundary condition,
an appropriate macro model is given by (6) and (7) which
describes the mutual inductance with respect to a position
variation of the coils. In the next section, the calculation of
the boundary conditions is discussed and possible methods for
the adaption of the coefficients in (6) and (7) are described.

IV. ADAPTION OF GENERAL SOLUTION TO BOUNDARY
CONDITION

An unique solution of (2) is only obtained in combination
with boundary conditions. These have to be determined in
advance for specific relative positions of the two coils. Hereby,
boundary conditions correspond to values of L12 on a sphere
with radius a from the origin O2 as shown in Fig. 1 for two
given coils.
Different methods can be used to determine such boundary
conditions. One possibility is to apply a field simulator or
using measurement data. In order to reduce the effort further,
Polynomial Chaos Expansion can be applied in these cases
[11]. Additionally, (1) can be applied to derive boundary
conditions numerically if a parameterization is possible.
In this contribution, two methods are discussed in order to
adapt the macro model derived by separation of variables.
One possibility is based on the fact that the basis functions
L̂l1,l2 are orthogonal. Therefore, the coefficients Cl1,l2 can be
calculated directly using an appropriate scalar product. For
the discussed spherical case in (6) and (7), the coefficients are
calculated by

al2l1 =
(2l2 + 1)(l1 − l2)!

2π(l1 + l2)!

∫ 2π

0

∫ π

0

f(θ, ϕ)·

P l2l1 (cos(θ)) cos(l2ϕ) sin(θ)dθdϕ

(8)

and

bl2l1 =
(2l2 + 1)(l1 − l2)!

2π(l1 + l2)!

∫ 2π

0

∫ π

0

f(θ, ϕ)·

P l2l1 (cos(θ)) sin(l2ϕ) sin(θ)dθdϕ.

(9)

If a parametrization of the coils can be given, f(θ, ϕ) can be
represented by the Neumann formula in (8) and (9). This ap-
proach yields a multi dimensional integral which can be solved
numerically. However, in general, rather complicated integral
expressions are obtained yielding stability issues by applying
standard numerical solvers. Additionally, for increasing l1 and
l2 the evaluation time increases drastically.
Alternatively, boundary approximation methods can be utilized
[21]. For this purpose, the series expansion in (6) and (7)
is truncated after a certain order Nmax. The accuracy of the
truncated series depends on the radius a of the spherical
boundary condition and the geometry of a pair of coils. For
values of a in the same size as the coil geometry, a larger
variation of f(θ, ϕ) can be expected in comparison to smaller
values of a. Hence, a larger maximal order Nmax of the
series expansion is necessary for the approximation of the
mutual inductance. Further, it can be noticed from (6) that
the contribution of higher order terms decreases with lower
values of r. Therefore, better results in the vicinity of the
origin (r � a) are expected if (6) is used as approach. In
the case of (7), the contribution of the neglected higher order
terms decreases for larger r yielding an opposite behavior as
for (6). Therefore, (6) is suitable in the case of a description
of the coils in the proximity of each other and (7) for a pair
of coils at greater distance to each other. In all cases, it has
to be ensured that no intersection occurs due to singularity in
(1).
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The main idea of the applied boundary approximation method
is to represent the boundary condition by a series expansion
[21]. The coefficients are calculated by solving a linear opti-
mization problem. In this contribution, the truncated series in
(3) obtained by the separation of variables is used as a physical
based approach for the series expansion. The coefficients are
calculated by minimizing the cost function

min
Cl1,l2

N∑
i=1

Nmax∑
l1,l2

Cl1,l2L̂l1,l2(Ri)− f(θi, ϕi)

2

(10)

at discrete boundary points Ri ∈ ∂Ω with a least square fit
[22]. In the special case shown in (6) and (7) the following
linear equation is solved

AᵀAC = Aᵀy (11)

with

A =


1
2 · · · sin(Nmaxϕ1)PNmax

Nmax
(cos(θ1))

1
2 · · · sin(Nmaxϕ2)PNmax

Nmax
(cos(θ2))

...
. . .

...
1
2 · · · sin(NmaxϕN )PNmax

Nmax
(cos(θN ))

 , (12)

C = (a00, a0,1, · · · , bNmaxNmax
)
ᵀ (13)

and
y = (f(θ1, ϕ1), · · · , f(θN , ϕN ))

ᵀ
. (14)

In this contribution, the samples on the boundary condition
are distributed equidistantly. In contrast to the scalar product
in (8) and (9), sample points on the boundary obtained
by measurement or simulation can be used. With (10), the
missing coefficients in (6) and (7) are directly calculated so
that a macro model of the mutual inductance with respect
to the relative position is obtained. However, the possible
maximal order depends on the number of points used. In
[23], it is proposed to apply N1 > 2Nmax in the case of
one independent variable in the least square fit, whereby N1

describes the number of samples. Then, N1 does not influence
the accuracy of the least square fit anymore. Due to two
independent variables in the presented method, the appropriate
number of samples is N = N1 · N1 > (2Nmax)2. Further, it
shall be noticed that the coefficients obtained by the scalar
product and the least square fit in (10) coincide only in
special cases. In general, different coefficients are obtained
by these two methods. A detailed convergence analysis of
this method is discussed also in [23]. It is shown that with
increasing Nmax the approximation converges to the exact
solution. By comparing the change of the coefficients with
increasing Nmax, a sufficient maximal order can be estimated.
Thereby, it has to be noticed that smaller order coefficients
converges faster in comparison to higher order terms as shown
in [23]. Therefore, a higher accuracy for small displacements
‖R‖ ≈ 0 are achieved in general.

V. ILLUSTRATION OF THE PROPOSED METHOD BY A
SIMPLE EXAMPLE

In this section the complete procedure is described in the
following by the simple example shown in Fig. 2. The example

rin O1

Ri

O2ϕ
θ

x1

x2

dx1

dx2Spherical boundary
with radius a ẑ

Fig. 2: Simple example consisting of two equal circular spiral
coils with rin = 1 cm and five windings.

consists of two equal spiral coils with five windings and rin =
1 cm. In this example, the mutual inductance between two
equal circular coils shall be calculated in dependency of the
relative position. In order to provide an overview, each step
of the procedure is summarized in Fig. 3. In the first step the
origins O1 and O2 in relation to the two coils have to be
defined which are used for the parametrization of each coil.
The origins have to be placed so that for all possible R no
intersection occurs between the pair of coils. In the special
case shown in Fig. 2 both coils are assumed to be planar. In
order to avoid intersection between both circular spiral coils
an offset ẑ is added. In the case of ‖R‖ = 0, both origins
are coincident and both circular spiral coils will not intersect
with ẑ 6= 0. Therefore, an offset is added in order to avoid an
intersection.
In the next step, the spherical boundary condition ∂Ω with the
radius a is defined. The radius a has to be chosen in such a
way that in reference to the origins O1 and O2 no intersection
between the pair of coils occur.In the case of the introductory
example, the parameter a is restricted by ẑ. In the case of
a < ẑ, an intersection is avoided for all parameters of ϕ and
θ. In this example, the critical case occurs for θ = π rad, that
is coil 1 is moved in the direction of coil 2. If a > ẑ, then an
intersection between both coils occur. Further, f(θ, ϕ) depends
on a which is used for the least square fit. In dependency of
the specific geometry of the pair of coils, the contributions of
higher order depends on a. For smaller values of a, a lower
maximal order is necessary. For example, in the case shown
in Fig. 2 a suitable choice could be a = rin which corresponds
to the radius of the structure.
Thirdly, an initial maximal order Nmax is picked for the series
expansion in (6). In the introductory example Nmax = 1 is
chosen so that the mutual inductance is described by

L12 =
1

2
a00 +

( r
a

)
·
[

1

2
a01P1(cos(θ))

+ (a11 cos(ϕ) + b11 sin(ϕ))P 1
1 (cos(θ))

]
.

(15)

In the next step, f(θi, ϕi) is calculated at discrete positions
Ri ∈ ∂Ω on the spherical boundary with the radius a. Hereby,
it has to be ensured that a sufficient number of samples is
calculated for the given maximal order Nmax. In the case of
N > (2Nmax)2, the accuracy of the applied least square fit
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TABLE I: First largest coefficients of (6) for Fig. 2 obtained
by (11).

Nmax a00 [nH] a01 [nH] a02 [nH] a03 [nH]

3 9.25 19.9428 56.0515 60.9788

5 6.66738 15.1316 27.658 32.6383

9 5.53311 12.9449 20.5171 25.7408

12 5.36795 12.7166 19.6271 25.1427

14 5.35047 12.6301 19.5362 24.9242

is independent of the number of samples. It is practically to
pick at least enough samples so that the least square fit for
Nmax + 2 can be performed in order to evaluate the change
of coefficients. For the considered case, this means that at
least N = 49 is applied in order to evaluate the change
of calculated coefficients with increasing order. Further, the
mutual inductance on the boundary condition is calculated at
equally distributed positions of ϕi and θi. With these values
a least square fit as shown in (10) is performed in order to
determine the missing coefficients in (6). A sufficient high
Nmax can be determined according to the change of the
coefficients for increasing Nmax. If the change of coefficients
is too large in comparison to the boundary values, the maximal
order Nmax has to be increased further. If necessary, the
number of samples N on the boundary R ∈ ∂Ω has to
be increased as well in order to ensure N > (2Nmax)2. In
the specific case of the pair of spiral coils, the least square
fit is performed for the case of Nmax = {3, 5, 9, 12, 14}.
Further, the coefficients for each maximal order are compared
to each other and the difference between them are evaluated.
In Table I, the first largest coefficients are presented for an
exemplary set of parameters for the circular spiral coils. As can
be seen, the difference between the coefficients for different
maximal order reduces with increased Nmax. Further it can
be seen that the lower order coefficients converge faster in
comparison to the higher order terms. After determination of
the coefficients, a macro model is obtained which describes
the mutual inductance inside r < a and outside r > a of the
spherical boundary condition. However, in this contribution
only the mutual inductance inside r < a of the spherical
boundary condition is considered.

VI. APPLICATION TO DIFFERENT COIL GEOMETRIES

In this section, the described procedure is presented for
different examples. For comparison of the obtained results the
relative error

rel. error =
|L12,approx − L12,num|

|L12,num|
· 100 % (16)

is considered whereby L12,approx are the results obtained by
the derived macro model and L12,num are the numerical results
obtained by repeatedly solving (1) using Gaussian quadrature.
The presented procedure is applied to a coil system of a
position sensor and a butterfly coil used in MRI.

A. Position Sensor

In this section, the described procedure is presented for a
CIPOS R© with the coil and rotor design shown in Fig. 4.

Define origins O1, O2, so that no
intersection between coils occurs for

‖R‖ = 0.

Choose appropriate radius a to define Ω
and determine R on the boundary ∂Ω

Define initial maximal order Nmax of series
expansion in (6)

Determine mutual inductance at equally
distributed positions Ri ∈ ∂Ω by

measurements or simulations

Determine unknown coefficients of series
expansion (6) with least square fit by

solving (11)

Comparing change of coefficients for
increasing Nmax as shown in Table I.

Accuracy sufficient

In
cr

ea
se

of
N

m
a
x

Pick solution (6) inside (r < a) or (7)
outside (r > a) of spherical boundary

Fig. 3: Flowchart of the presented procedure applied in this
contribution to derive a macro model of the mutual inductance
for a pair of coils.

In particular, the mutual inductance between excitation coil
and rotor is examined in detail which effects mainly the signal
strength and therefore the signal-to-noise ratio. Additionally,
the cross section of the conductors are reduced, since the
procedure can only be applied for filamentary coils. An
extension to coils with cross section can be performed by
discretization for example.
In Fig. 5 the considered filamentary excitation and rotor coil
are shown. In this specific case, the excitation coil is realized
on a PCB on two layers. The macro model shall describe the
behavior in the vicinity of the excitation coil. Therefore, (6)
is used with a boundary condition of a radius a similar to the
sizes of the excitation coil. Due to the possible singularity, as
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Excitation coil

Receiving coils Rotor

Fig. 4: Exemplary Contactless Inductive Position Sensor
(CIPOS R©) with excitation, receiving coil and rotor.

x2

ϕ
θO2 R

O1

x1
Rotor

Excitation coil

2 mm

ẑ

Fig. 5: Filamentary excitation coil and rotor of the CIPOS R©

in Fig. 4 with applied coordinate systems.

TABLE II: First largest coefficients of (6) for Fig. 5 in the case
of ẑ = 1 cm and a = 0.9 cm obtained by (10).

Nmax a00 [nH] a01 [nH] a02 [nH] a03 [nH]

3 −25.88 40.146 −49.388 35.367

5 −24.884 39.034 −38.549 28.978

7 −24.774 38.912 −37.832 28.574

9 −24.761 38.899 −37.756 28.535

can be seen in (1), it has to be ensured that no intersection of
the rotor and coil occur. For this reason, a = 0.9 cm and an
offset of ẑ = 1 cm is used in order to ensure that the rotor is
always above the excitation coil and no intersection is possible
due to r ≤ a. The equidistantly distributed data points on the
boundary are obtained by an inhouse simulator based on a
variation of PEEC [10]. In the next step, the least square fit
in (10) is applied in order to obtain the missing coefficients in
(6). In Table II, the first four largest coefficients are presented
in dependency of the maximal order Nmax. As shown, the
coefficients converging with increasing Nmax. This analysis
can be used to determine a sufficient high maximal order
Nmax. If the change of coefficients is low, a higher accuracy
is obtained by the macro model. Additionally, the smaller the
order of the coefficient the faster it converges.
In Fig. 6, the results obtained by the macro model for
r = 0.7 cm with Nmax = 7 (plane) in dependency of θ and ϕ
are compared to numerical results (dots). The maximal relative
error in the presented range is 0.99 %. For a more specific
evaluation, the results of the macro model are compared at
specific positions in the following.

θ in rad

L
1
2

in
nH

ϕ in rad

3

2

1
0

-50

-30

-10

0
2

4
6

Fig. 6: Macro model results with Nmax = 7 (plane) for
different positions at r = 0.7 cm in comparison to numerical
results (dots) for the coil system in Fig. 5.

Num.

Approx. Nmax =3

Approx. Nmax =7

2 4 6 8
r in mm

-80

-60

-40

-20

L 1
2
in
nH

0

0

Fig. 7: Mutual inductance of rotor and excitation coil in Fig. 5
approximated by the macro model with Nmax = 3 (straight
line) and Nmax = 7 (dashed line) in comparison to numerical
results by inhouse simulator (dots) with θ = π rad, ϕ = 0 rad
and varied distance r.

TABLE III: Maximal relative error in Fig. 7 for different Nmax

in the case of ẑ = 1 cm and a = 0.9 cm.

Nmax
Max. relative error

in the range r < 1.2mm
Max. relative error

in the complete range

3 4.9% 12.7%

4 1.01% 5.55%

5 0.47% 2.39%

7 0.007% 0.37%

TABLE IV: Maximal relative error in the case of ẑ = 2 cm
and a = 1.9 cm for a variation of r in the range from 1 cm to
1.9 cm at θ = π rad and ϕ = 0 rad.

Nmax
Max. relative error in the range

1 cm < r < 1.9 cm

3 52.29%

4 30.71%

5 18.49%

7 13.97%

In Fig. 7, the solution obtained by the macro model with
Nmax = 7 is compared with numerical results obtained by
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TABLE V: First largest coefficients of (6) for Fig. 5 in the
case of ẑ = 2 cm and a = 1.9 cm obtained by (10).

Nmax a00 [nH] a01 [nH] a02 [nH] a03 [nH]

3 −8.2672 17.336 −42.797 43.2

5 −6.4587 14.317 −23.299 25.971

7 −6.0022 13.557 −20.361 23.5008

the inhouse simulator for a variation of r with θ = π rad
and ϕ = 0 rad. The maximal relative error is 0.37 % in the
complete range for Nmax = 7. The influence of the maximal
order Nmax is shown in Table III. It can be noticed that
with increasing Nmax the maximal relative error decreases.
Additionally, the relative error in the range of 0 < r < 1.2 mm
is presented in comparison. The accuracy of the model is
higher in the vicinity of the origin r ≈ 0. For larger values
of r, the error increases since the contribution of higher order
terms increases as well which converge slower than the lower
order terms. Therefore, a higher relative error is obtained in
the larger range.
In Table IV, the same study is performed for a larger value
of a. The variation of r is adapted to the range from 1 cm to
1.9 cm in order to remain the comparability to the results in
Table III. A comparison of Table III and Table IV shows that
for equal maximal order Nmax the maximal relative error is
higher in the case of a larger value of a.
In Table V, the first four largest coefficients are presented in
dependency of the maximal order Nmax for ẑ = 2 cm. In
comparison to Table II, a larger change of coefficients can be
noticed with increased Nmax. This indicates that Nmax = 7
is not sufficient enough and a larger Nmax has to be used
for the case ẑ = 2 cm. Therefore, the relative error is much
higher in Table V in comparison to Table II. Due the power
series characteristics, the relative error is higher for a = 2 cm
since a larger value of r is used in comparison to the results
with a = 0.9 cm. Therefore, the contribution of the slower
converging coefficients is increased, too.
The results obtained by the macro model with Nmax = 7
(straight line) and Nmax = 4 (dashed line) are compared to
numerical results (dots) for r = 0.7 cm and ϕ = 0 rad in
Fig. 8. In this case, a maximal relative error of about 1.25 %
is reached. The behavior for a variation of ϕ at r = 0.8 cm
and θ = π

2 is shown in Fig. 9. Hereby, the macro model
with Nmax = 7 (straight line) is compared to numerical
results (dots). In this case, the maximal relative error is about
2.93 %. In [17] a fit is used to approximate the magnetic
field for two perfectly axial aligned solenoid coils. In this
case, an error lower than 0.1 cm for a distance from 4 cm
up to 0.8 m is achieved with the fit. In contrast to the results
in [17], the presented method can be also applied for more
complex coil geometries as shown in Fig. 5. Further, the not
axial case can be modeled which enables the detection in all
three directions. However, a much higher order is necessary in
order to achieve higher accuracy. In the following subsection,
the procedure is demonstrated for a different coil geometry
from a different area of application in order to demonstrate
the broad applicability.

L 1
2
in
nH

θ in rad
0 0.5 1.0 1.5 2.0 2.5 3.0

0

Fig. 8: Mutual inductance of rotor and excitation coil in
Fig. 5 approximated by the macro model (straight line) in
comparison to numerical results by inhouse simulator (dots)
with r = 0.7 cm, ϕ = 0 rad and varied distance r.

L 1
2
in
nH

0 1 2 3 4 5 6
ϕ in rad

Fig. 9: Mutual inductance of rotor and excitation coil in
Fig. 5 approximated by the macro model (straight line) in
comparison to numerical results by inhouse simulator (dots)
with r = 0.8 cm, θ = π/2 rad and varied distance r.

B. Example: Rogowski Coil

In this section the described method is applied for a Ro-
gowski coil in Fig. 10 which can be used for the measurement
of alternating current [24]. The origins O1 for a Rogowski
coil and O2 for a wire, which passes through the axes of
the Rogowski coil, are in the center of each coil as shown in
Fig. 10a. In the case of ‖R‖ = 0 both origins are equal. The
geometric parameters of the Rogowski coil are Rin = 2 mm,
d = 2.5 mm and h = 1.2 mm with N = 20 windings. The
length of the wire is l = 5 mm so that a movement in z-
direction has no significant impact on the mutual inductance.
For the presented procedure a radius of a = 1.4 mm is
used for the boundary condition. Due to r ≤ a < R,
no intersection between wire and Rogowski coil can occur.
The mutual inductance between wire and Rogowski coil are
calculated by using an inhouse simulator based on a variation
of PEEC. In Table VI, the first largest coefficients are shown in
dependency of Nmax, which are obtained by the least square
fit. At Nmax = 7, a small change in comparison to the
boundary values of the coefficients with increasing Nmax can
be noticed. For this reason, Nmax = 7 is used in the following.
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O1,2

x

y

z

Rind

Wire

(a)

Wire

h

l

(b)

Fig. 10: Rogowski coil realized on a PCB with a current wire
inside of the coil in the top (a) and side view (b) [24].

TABLE VI: First largest coefficients of (6) a = 1.9 cm for
Fig. 10 obtained by (10).

Nmax a00 [nH] a01 [nH] a02 [nH]

1 4.9303 0.47163 -
3 5.0909 0.47520 −0.54948

5 5.0903 0.47633 −0.55576

7 5.0902 0.47631 −0.55626

Num.

Approx. Nmax =7

0.2 0.4 0.6 0.8 1.0 1.2 1.4
r in mm

2.55

2.60

2.65

2.70

L 1
2
in
nH

Fig. 11: Mutual inductance between Rogowski coil and wire
calculated by the macro model (line) and numerical simula-
tions (points) for ϕ = 0 rad and θ = π/2 rad.

In Fig. 11, the results in dependency of r ≤ a obtained by the
macro model for θ = π/2 rad and ϕ = 0 rad are shown1.
The maximal error in the complete range is about 0.004 %.
In the next step, a variation of θ is considered for r = 1 mm
and ϕ = 0 rad. In Fig. 12, the results obtained by the macro
model (line) are compared to numerical results (points). The
maximal relative error is about 0.0025 %. As presented, the
macro model yields high accuracy with a relative error lower
than 0.01 %. Due to the symmetry of the coil system, a much
higher accuracy in comparison to the example discussed in
Section VI-A are obtained with the same maximal order.

C. Example: Butterfly Coils

In this section, the procedure is demonstrated for two identi-
cal coils with the shape shown in Fig. 13 and the arrangement
demonstrated in Fig. 14. In the literature this coil design is
known as butterfly coils, due to the structure similar to a

Num.

Approx. Nmax =7

0.5 1.0 1.5 2.0 2.5 3.0
θ in rad

2.3

2.4

2.5

2.6

2.7

L 1
2
in
nH

Fig. 12: Mutual inductance between Rogowski coil and wire
calculated by the macro model (line) and numerical simula-
tions (points) for ϕ = 0 rad and r = 1 mm.

x{1,2}

y{1,2}

z{1,2}

H

A A

B

∆H dx{1,2}
Seg{1,2},1

Fig. 13: Description of a butterfly coil in a Cartesian coordinate
system applied in an array with identical coils for MRI with
A = 11 cm, B = 4 cm, H = 1 cm and ∆H = 1 cm [25].

O1

O2

d

R

ϕ θ

x1

x2

dx1

dx2

Fig. 14: Array of two equal butterfly coils applied in MRI
with variable relative positions to each other described in a
spherical coordinate system [25].

butterfly [25]. O1 and O2 are the corresponding origins of
coil 1 and 2, respectively. The dimensions of the coils are
A = 11 cm, B = 4 cm, H = 14 cm and ∆H = 1 cm [25]. In
this example, the second coil is considered always above the
first coil. Therefore, the procedure is performed with (6) and
for the parameterization of the coils, a Cartesian coordinate
system is used. For example, the denoted segments in Fig. 13
are described by

rSeg1,1
= [x̃1 0 0]

ᵀ
x̃1 ∈ [0, A+B] (17)

and
rSeg2,1

= [x̃2 0 ẑ]
ᵀ

x̃2 ∈ [0, A+B] (18)

in reference to the corresponding origins O1 and O2, re-
spectively. In (18), an additional offset ẑ is added in order
to ensure that the second coil is always placed above the
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3
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0

20

40

0
246 ϕ in rad

L
1
2

in
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θ in rad
Fig. 15: Macro model results with Nmax = 14 (plane) for
different positions at r = 12 cm in comparison to numerical
results (dots) for the coil system in Fig. 14.

Num.

Approx. Nmax =14

Approx Nmax =4

0.05 0.10 0.15
r in m

100

200

300

L 1
2
in
nH

400

0
0

Fig. 16: Macro model results with Nmax = 4 (dashed line) and
Nmax = 14 (straight line) for a variation of r at θ = 0 rad
and ϕ = 0 rad in comparison to numerical results (dots) for
the coil system in Fig. 14.

first one. With the restriction ẑ > a, it is also assured
that no intersection between both coils is possible during the
calculation of the boundary samples. In this example, the offset
is set to ẑ = 20 cm and the radius is chosen as a = 19 cm.
All results are compared to solutions obtained by a repetitive
evaluation of (1) for the corresponding R ∈ ∂Ω. For this, an
equidistant grid on the boundary is used.
In Fig. 15, the results obtained by the macro model for
r = 12 cm with Nmax = 14 (plane) in dependency of θ and ϕ
are compared to numerical results (dots). The maximal relative
error in the presented range is 17.85 % with Nmax = 14. For
a better comparison, different position variations of the coils
are examined in the following.
In Fig. 16, the mutual inductance calculated by the macro
model with Nmax = 14 (straight line) and Nmax = 4
(dashed line) in comparison to numerical results (dots) is
shown for θ = 0 rad and ϕ = 0 rad. This position variation
reduces the distance between the coils. The deviation of
the results obtained by the macro model increases with r
as expected. Further, it can be noticed that the increase of
the maximal order Nmax yields a better approximation for
larger r. The maximal relative error is 47.4 % for Nmax = 4
and 5.6 % for Nmax = 14. An overview of the maximal
relative error in dependency of Nmax is shown in Table VII.

Num.

Approx. Nmax =14

Approx Nmax =4

0.05 0.10 0.15 0.20
d in m

-40

-20

20

40

60

L 1
2
in
nH

0

Fig. 17: Macro model results with Nmax = 4 (dashed line)
and Nmax = 14 (straight line) for a variation of d with a
height distance between the coils of 10 cm at ϕ = 0 rad in
comparison to numerical results (dots) for the coil system in
Fig. 14.

TABLE VII: Maximal relative error in Fig. 16 for different
Nmax in the case of ẑ = 20 cm and a = 19 cm.

Nmax Max. relative error

4 47.4%

6 22.1%

8 14.4%

10 10.2%

12 7.56%

14 5.6%

TABLE VIII: Maximal relative error in the case of ẑ = 11 cm
and a = 10 cm for a variation of r in the range from 0 cm to
10 cm at θ = 0 rad and ϕ = 0 rad.

Nmax Max. relative error

4 18.79%

6 10.72%

8 6.88%

10 4.58%

12 3.08%

14 2.07%

With increasing order, the maximal relative error decreases.
However, the change of relative error decreases with larger
Nmax. In Table VIII, the same investigation is performed for
a = 10 cm. In order to ensure the same distance between the
coils, the parameterization in (18) is adapted to ẑ = 11 cm.
A comparison between Table VII and VIII shows that the
maximal relative error decreases in the case of a = 10 cm at
the same maximal order Nmax. However, the possible range
of r is more restricted in the case of a = 10 cm. Therefore,
the original parameters ẑ = 20 cm and a = 19 cm are used
in the following. In Fig. 17, the behavior for a variation of d
with ϕ = 0 rad is presented for Nmax = 4 (dashed line) and
Nmax = 14 (straight line) in comparison to numerical results
(dots). For an increasing maximal order Nmax, the accuracy
of the macro model increases. At d = 16.16 cm, it follows
r = a, so that the macro model cannot be applied for larger
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values anymore. Nevertheless, the optimal distance d at which
the magnetic coupling between the two coils is minimized can
be directly obtained by the macro model inside the boundary
condition with r < a [26]. The maximal relative error is
360.13 % for Nmax = 4 and 12 % for Nmax = 14 in the
region r < a.
In summary, it can be noticed that the macro model provides
better approximation for smaller r as expected. The accuracy
can be increased by the maximal order Nmax.

VII. CONCLUSION

In this contribution, a new method is presented for the macro
modeling of the mutual inductance of two filamentary coils
in dependency of the relative position. Instead of repeatedly
solving the complete problem for different positions, the
mutual inductance is treated as a potential function which
obeys Laplace’s equation. An approximate solution is obtained
by a series expansion in spherical coordinates based on the
separation of variables approach for Laplace’s equation. The
unknown coefficients of the approach are adapted by a least
square fit. Thereby, the mutual inductance has only to be
calculated at specific positions of the two filamentary coils.
The complete procedure is presented by means of different
examples which are applied in biomedical and industrial
applications. Depending on the pair of coils and the considered
region Ω, a sufficient maximal order of the series expansion
has to be used for a given accuracy. It was shown, that the
accuracy of the presented method depends on the specific coil
geometry. A possibility to determine a suitable maximal order
was also presented by comparing the calculated coefficients
with increasing maximal order. Due to the linearity of the
considered problem, the method can also be applied for
systems containing more than two coils. For this purpose, the
method is applied to every possible pair of coils separately.
After that, the mutual inductance between every pair of coils
in the system can be described. In following contributions,
the benefits of the application of numerical methods to solve
the Laplace’s equation can be examined. Additionally, the
possibility to reduce the effort for the calculation of the
boundary condition with known order reduction techniques
like PCE can be researched.
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